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1 INTRODUCTION TO PARTIAL DIFFERENTIAL

EQUATIONS

1.1 Introductory Concepts

Def 1. A partial di�erential equation (PDE) is a di�erential equation in which the
unknown function depends on two or more independent variables. For example,

ux − 3uy = 0

is a PDE in which u is the (unknown) dependent variable, while x and y are the
independent variables.

We can express a PDE in one dependent variable and two independent variables
by the general form

f(x, y, z, zx, zy, zxy, zxx, zyy, . . . ) = 0 (1)

z is (unknown) dependent variable. x, y are independents variables.

Notations

Partial derivatives are often denoted by subscript notation indicating the inde-
pendent variables.For example,

zx =
∂z

∂x
, zy =

∂z

∂y
, zxy =

∂2z

∂x∂y
, zxx =

∂2z

∂x2
, zyy =

∂2z

∂y2

We adopt the following notations throughout the study of PDEs,

p = zx, q = zy, r = zxx, s = zxy, t = zyy

Example 1.1.1. Write the following equations by using the previous symbols.

zxy + 2zx + 3zy + 5z = 2x+ cos(x− y)

zx + 3zy = 5z + tan(3x− 2y)

zxx + zyy = x2y2

1.2 Classi�cation of PDE

To talk about PDE(s), we shall classify them by order, number of variables,
linearity, and types of coe�cients
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1.2.1 Classi�cation by order

Def 2. The order of a PDE is the order of the highest derivative appearing in the
equation.
The degree of a PDE is the power of highest derivative appearing in the equation.

Example 1.2.1.

zt = zxx

is a second-order PDE.
∂u

∂y
= −∂v

∂x

is a �rst-order PDE.
zt = zxxx + sinx

is a third-order PDE.

1.2.2 Classi�cation by number of variables

The number of variables is the number of an independent variables appearing
in the equation. For example, zt = zxx has two independent variables (t, x), and
ut = urr + 1

r
uθθ has three independent variables (t, r, θ)

1.2.3 Classi�cation by linearity

Def 3. A linear n-th order PDE is a PDE which can be put in the form. The
left side of the equation is a linear combination of the unknown function z and its
partial derivative (up to order n) with coe�cients which are given functions of the
independent variables or constants. The right side must be some given function f of
the independent variables. If function f is indentically zero, then the linear PDE is
called a homogeneous PDE.

Example 1.2.2. Classify the following PDE(s) as linear or nonlinear, specify whether
it is homogeneous or inhomogeneous.

(a) x2uxxy + y2uyy − ln(1 + y2)u = 0 homogeneous linear PDE.

Nonlinear functions of the dependent variable or its derivative, such as sinu, cosu, eu
′
,

or lnu, cannot appear in a linear equation.

(b) ux + u3 = 1 nonhomogeneous nonlinear PDE.
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(c) uuxx + uyy − u = 0 homogeneous nonlinear PDE.

(d) uxx + ut = 3u homogeneous linear PDE.

(e) uxxyy + exux = y nonhomogeneous linear PDE.

Remark. The general second-order linear PDE for an unknown function u = u(x, y)
is

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G (2)

where A,B,C,D,E, F and G are given functions (possibly constants) of x and y,
with A,B, and C not all zero. If G ≡ 0 , then (2) is the general second-order
homogeneous linear PDE.

1.2.4 Classi�cation by types of coe�cients

- If A,B,C,D,E, F and G in (2) are constants then it called linear PDE with
constants coe�cients.
- If one or more of the coe�cients A,B,C,D,E, F and G in (2) are functions of x
or y or x, y then it called linear PDE with variable coe�cients.

1.3 Classi�cation of second-order linear PDE

If we combine the lower order terms and rewrite (2) in the following form

Auxx +Buxy + Cuyy + I(x, y, u, ux, uy) = 0 (3)

As we will see, the type of the above equation depends on the sign of the quantity

∆(x, y) = B2(x, y)− 4A(x, y)C(x, y), (4)

Which is called the discriminant for (3). The classi�cation of second-order linear
PDE is given as following

Def 4. At the point (x0, y0) the second-order linear PDE (3) is called

(i) hyperbolic, if ∆(x0, y0) > 0

(ii) parabolic, if ∆(x0, y0) = 0

(iii) elliptic, if ∆(x0, y0) < 0

Example 1.3.1. Classify the following PDEs as parabolic, elliptic, and hyperbolic.
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(a) ut = uxx
uxx − ut = 0
A = 1, B = 0, C = 0
∆ = B2 − 4AC = 0− 4(0) = 0 , the PDE is parabolic.

(b) utt = uxx
uxx − utt = 0
A = 1, B = 0, C = −1
∆ = B2 − 4AC = 0− (1)(−1) = 4 > 0, the PDE is hyperbolic

(c) uxy = 0
A = 0, B = 1, C = 0
∆ = B2 − 4AC = 1− 4(0) = 1 > 0, the PDE is hyperbolic

(d) αuxx + uyy = 0, where α is a constant,.
A = α,B = 0, C = 1
∆ = B2 − 4AC = 0− 4α = −4α

We have three properties,

(i) if α = 0 the PDE is parabolic.

(ii) if α > 0 the PDE elliptic.

(iii) if α < 0 the PDE is hyperbolic.

1.4 Solutions and Solution Techniques

1.4.1 Applications of PDEs

There are many applications of PDEs, in our study we will adopt the most im-
portant PDEs that arise in various branches of science and engineering.

Heat Equation

∂2u

∂x2
=

1

k

∂u

∂t
, k is a positive constant. (5)

Wave equation
∂2u

∂x2
=

1

k2
∂2u

∂t2
, k is a positive constant. (6)
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Laplace's equation
∂2z

∂x2
+
∂2z

∂y2
= 0 (7)

Def 5. A function u(x, y) is called harmonic if it satis�es Laplace's equation; that
is uxx + uyy = 0.

Example 1.4.1. Verify that u = e3x cos 3y is a harmonic function.

Solution. Taking the derivatives of u leads us to:
ux = 3e3x cos 3y, uxx = 9e3x cos 3y
uy = −3e3x sin 3y, uyy = −9e3x cos 3y
∴ uxx + uyy = 9e3x cos 3y − 9e3x cos 3y = 0, u indeed is a harmonic function.

1.4.2 Solution of linear PDEs

Def 6. A solution of linear PDE (2) is a function u = g(x, y) that satis�es the
di�erential equation.

Example 1.4.2. Verify that u(x, t) = sin x cos kt satis�es the wave equation (6).

Solution. Taking derivatives of u leads us to :
ux = cosx cos kt, uxx = − sinx cos kt,
ut = −k sinx sin kt, utt = −k2 sinx cos kt.
∵ uxx = 1

k2
utt

∴ − sinx cos kt = 1
k2

(−k2 sinx cos kt) = − sinx cos kt, u indeed is a solution.

Example 1.4.3. Verify that u(x, y) = x2 − y2 satis�es Laplace's equation(47).

Solution. Taking derivatives of u leads us to:
ux = 2x, uxx = 2,
uy = −2y, uyy = −2.
∵ uxx + uyy = 0
∴ 2− 2 = 0; u indeed is a solution.

Example 1.4.4. Verify that any function of the form F (x + kt) satis�es the wave
equation (6).

Solution. Let u = x + kt; then by using the chain rule for partial derivatives, we
have:
Fx = dF

du
ux = dF

du
(1) = dF

du
, Fxx = d2F

du2
ux = d2F

du2
(1) = d2F

du2

Ft = dF
du
ut = dF

du
(k), Ftt = k d

2F
du2

ut = k2 d
2F
du2

.
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∵ Fxx = 1
k2
Ftt

∴ d2F
du2

= 1
k2

(k2 d
2F
du2

) = d2F
du2

, so we have veri�ed that any su�ciently di�erentiable
function of the form F (x+ kt) satis�es the wave equation. We note that this means
that functions such as

√
x+ kt, tan−1(x + kt) and ln(x + kt) all satisfy the wave

equation.

Example 1.4.5. Verify that u(x, t) = e−kt sinx satis�es the heat equation (5).

Solution. Taking derivatives of u leads us to:
ux = e−kt cosx, uxx = −e−kt sinx
ut = −ke−kt sinx.
∵ uxx = 1

k
ut

∴ −e−kt sinx = 1
k
(−ke−kt sinx) = −e−kt sinx, u indeed is a solution.

1.4.3 Solving linear PDEs by basic integration

Example 1.4.6. Let z = z(x, y). By integration, �nd the general solution to zx =
2xy.

Solution. Integrating with respect to x, we have:∫
zx dx =

∫
2xy dx

z(x, y) = x2y + g(y), where g(y) is any di�erentiable function of y.

Example 1.4.7. Let u = u(x, y). By integration, �nd the general solution to ux = 0.

Solution. Integrating with respect to x, we have:∫
ux dx =

∫
0 dx

u(x, y) = g(y), where g(y) is any di�erentiable function of y.

Example 1.4.8. Let u = u(x, y, z). By integration, �nd the general solution to
ux = 0.

Solution. Integrating with respect to x, we have:∫
ux dx =

∫
o dx

u(x, y, z) = f(y, z), where f(y, z) is any di�erentiable function of y, z.

Example 1.4.9. Let u = u(x, y). By integration, �nd the general solution to ux =
2x, u(0, y) = ln y.

Solution. Integrating with respect to x, we have:∫
ux dx =

∫
2x dx

u(x, y) = x2 + f(y), where f(y) is any di�erentiable function of y.
Letting x = 0 implies u(0, y) = 02 + f(y) = ln y. Therefore f(y) = ln y, so our
solution is u(x, y) = x2 + ln y.
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Example 1.4.10. Let u = u(x, y). By integration, �nd the general solution to
uy = 2x.

Solution. Integrating with respect to y, we have:∫
uy dy =

∫
2x dy

u(x, y) = 2xy + g(x), where g(x) is any di�erentiable function of x.

Example 1.4.11. Let u = u(x, y). By integration, �nd the general solution to
uxy = 2x.

Solution. Integrating �rst with respect to x, we have:∫
uxy dx =

∫
2x dx

uy = x2 + g(y), where g(y) is any di�erentiable function of y.We now integrate uy
with respect to y.∫
uy dy =

∫
(x2 + g(y)) dy ,

u(x, y) = x2y+ f(y) + h(x), where f(y) is an antiderivative of g(y), and h(x) is any
di�erentiable function of x.

If we solve uyx = 2x, our result would be the same.
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Supplementry Problems

1. Verify that any function of the form F (x− kt) satis�es the wave equation (6).

2. If u = f(x− y), show that ∂u
∂x

+ ∂u
∂y

= 0.

3. Which of the following functions are harmonic: (a)3x + 4y + 1; (b)e3x cos 4y;
(c) ln(x2 + y2); (d) sin(ex) cos(ey).

4. Find the general solution to ux = cos y if u(x, y) is a function of x and y.

5. Find the general solution to uy = cos y if u(x, y) is a function of x and y.

6. Find the general solution to uy = 3 if u(x, y) is a function of x and y, and
u(x, 0) = 4x+ 1.

7. Find the general solution to ux = 2xy + 1 if u(x, y) is a function of x and y,
and u(0, y) = cosh y.

8. Find the general solution to uxy = 8xy3 if u(x, y) is a function of x and y.

9. Find the general solution to uxx = 3 if u(x, y) is a function of x and y.
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2 Formation of PARTIAL DIFFERENTIAL EQUA-

TIONS by Elimination

We shall now examine the interesting question of how partial di�erential equation
arise. We show that such equations can be formed by the elimination of arbitrary
constants or arbitrary functions.

2.1 Derivation of PDE by the elimination of arbitrary con-

stants.

Consider an equation
F (x, y, z, a, b) = 0 (8)

where a and b denote arbitrary constants. Let z be regarded as function of two
independent variables x and y. Di�erentiating (8) with respect to x and y partially
in turn, we get

∂F

∂x
+ p

∂F

∂z
= 0,

∂F

∂y
+ q

∂F

∂z
= 0 (9)

Eliminating two constants a and b from equations (8) and (9), we shall obtain an
equation of the form

f(x, y, z, p, q) = 0 (10)

which is partial di�erential equation of �rst order.
In similar manner it can be shown that if there are more arbitrary constants than

number of independent variable, the above procedure of elimination will give rise to
PDEs of higher than the �rst.

Example 2.1.1. Construct the PDE by eliminating a and b from

z = ax+ (1− a)y + b (11)

Solution. Di�erentiating (11) with respect to x, y , we get

p =
∂z

∂x
= a (12)

q =
∂z

∂y
= 1− a (13)

Now �nding the sum of (12) and (13), we get

p+ q = 1 (14)
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Example 2.1.2. Find a PDE by eliminating the arbitrary constants from

z = ax2 + by2, ab > 0 (15)

Solution. Di�erentiating (15) with respect to x, y , we get

p =
∂z

∂x
= 2ax −→ a =

p

2x
(16)

q =
∂z

∂y
= 2by −→ b =

q

2y
(17)

Substituting (16) and (17) into (15), we get

px+ qy = 2z (18)

Exercise. Find a PDE by eliminating the arbitrary constants from z = ax2 + by2 + ab

Example 2.1.3. Construct the PDE by eliminating a, b and c from

z = a(x+ y) + b(x− y) + abt+ c (19)

Solution. Di�erentiating (19) with respect to x, y and t, we get

∂z

∂x
= a+ b,

∂z

∂y
= a− b, ∂z

∂t
= ab (20)

Since (a+ b)2 − (a− b)2 = 4ab , we get by using (20)

(
∂z

∂x
)2 − (

∂z

∂y
)2 = 4

∂z

∂t

Example 2.1.4. Eliminate the arbitrary constant a from the following equation

z = a(x+ y) (21)

Solution. Di�erentiating (21) with respect to x or y , we get

p =
∂z

∂x
= a or q =

∂z

∂y
= a (22)

Substitute a in (21), we get

z = p(x+ y) or z = q(x+ y)
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Example 2.1.5. Construct the PDE by eliminating the arbitrary constants from

z = (x2 + a)(y2 + b) (23)

Solution. Di�erentiating (23) with respect to x, y , we get

p =
∂z

∂x
= 2x(y2 + b) −→ (y2 + b) =

p

2x
(24)

q =
∂z

∂y
= 2y(x2 + a) −→ (x2 + a) =

q

2y
(25)

Substitute (24) and (25) in (23), we get

pq = 4xyz.

Example 2.1.6. Construct the PDE by eliminating the arbitrary constants from

z = ax+ by + cxy (26)

Solution. Di�erentiating (26) with respect to x, y , we get

p =
∂z

∂x
= a+ cy −→ a = p− cy (27)

q =
∂z

∂y
= b+ cx −→ b = q − cx (28)

Now di�erentiating (27) with respect to y or (28) with respect to x , we get

s =
∂2z

∂x∂y
=

∂2z

∂y∂x
= c (29)

Substitute (27),(28) and (29) into (26), we get

z = px+ qy − sxy

2.2 Derivation of PDE by the elimination of arbitrary func-

tions.

If φ(u, v) = 0 is an arbitrary function of u and v, where u and v are functions of
x, y and z. We treat z as dependent variable and x and y as independent variables
so that

∂z

∂x
= p,

∂z

∂y
= q,

∂x

∂y
= 0,

∂y

∂x
= 0
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Example 2.2.1. Form a PDE by eliminating the arbitrary function f from

z = f(x− y) (30)

Solution. Di�erentiating partially (30) with respect to x and y , we get

p =
∂z

∂x
= f ′(x− y)(1) = f ′(x− y) (31)

q =
∂z

∂y
= f ′(x− y)(−1) = −f ′(x− y) (32)

Now �nding the sum of (31) and (32), we get p+ q = 0

Example 2.2.2. Form a PDE by eliminating the arbitrary function φ from

φ(x+ y + z, x2 + y2 − z2) = 0. (33)

Solution. Let
u = x+ y + z v = x2 + y2 − z2 (34)

Then (33) becomes
φ(u, v) = 0 (35)

Di�erentiating (35) w.r.t x partially, we get

∂φ

∂u

∂u

∂x
+
∂φ

∂v

∂v

∂x
= 0 (36)

From (34), we get
∂u

∂x
= 1 + p,

∂v

∂x
= 2x− 2zp (37)

Substituting (37) into (36), we get

∂φ

∂u
(1 + p) +

∂φ

∂v
(2x− 2zp) = 0 (38)

Again, di�. (35) w.r.t. y partially, we get

∂φ

∂u

∂u

∂y
+
∂φ

∂v

∂v

∂y
= 0 (39)

From (34), we get
∂u

∂y
= 1 + q,

∂v

∂y
= 2y − 2zq (40)
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Substituting (40) into (39), we get

∂φ

∂u
(1 + q) +

∂φ

∂v
(2y − 2zq) = 0 (41)

Now we will eliminate ∂φ
∂u

and ∂φ
∂v

from (38) and (41), as follows∣∣∣∣1 + p 2x− 2zp
1 + q 2y − 2zq

∣∣∣∣ = 0

∴ From the last equation, we get

(y + z)p− (x+ z)q = x− y

Example 2.2.3. Eliminate an arbitrary function from the following equation

x+ y + z = f(x2 + y2 + z2) (42)

Solution. Di�erentiating partially w.r.t x and y, (42) gives

1 + p = f ′(x2 + y2 + z2)(2x+ 2zp) (43)

1 + q = f ′(x2 + y2 + z2)(2y + 2zq) (44)

Determining f ′(x2+y2+z2) from (43) and (44) and equating the values, we eliminate
f and obtain

(1 + p)/(2x+ 2zp) = (1 + q)/(2y + 2zq)

or
(1 + p)(2y + 2zq) = (1 + q)(2x+ 2zp)

∴ (y − z)p+ (z − x)q = x− y

Note. If the given equation between x, y, z contains two arbitrary functions, then in
general, their elimination gives rise to equations of higher orders.

Example 2.2.4. Eliminate the arbitrary functions f and g from

y = f(x− at) + g(x+ at) (45)
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Solution. Di�erentiating partially w.r.t x and t , (45) gives

∂y

∂x
= f ′(x− at) + g′(x+ at)

∂2y

∂x2
= f ′′(x− at) + g′′(x+ at)

∂y

∂t
= f ′(x− at)(−a) + g′(x+ at)(a)

∂2y

∂t2
= f ′′(x− at)(a)2 + g′′(x+ at)(a)2

(46)

From the last equation, we get

∂2y

∂t2
= a2(f ′′(x− at) + g′′(x+ at))

∴
∂2y

∂t2
= a2

∂2y

∂x2
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Supplementry Problems

1. Eliminate the arbitrary constants indicated in brackets from the following equa-
tions and form the PDE.

(a) z = (x− a)2 + (y − b)2 (a and b)

(b) z = axy + b (a and b)

(c) az + b = a2x+ y (a and b)

(d) z = ax+ by + a2 + b2 (a and b)

(e) ax+ by + cz = 1 (a , b , c)

(f) z = aebt sin bx (a and b)

(g) z = a2x+ (y − b)2 (a and b)

2. Eliminate the arbitrary functions and hence obtain the PDEs.

(a) f( z
x2
, x− y) = 0

(b) z = x2f(x− y)

(c) z = f(x+ ay)

(d) z = f(x+ iy) + F (x− iy)

(e) z = f(xy
z

)

(f) z = f( y
x
)

(g) z = xy + f(x2 + y2)

(h) z = eax+byf(ax− by)

(i) z = f(x2 + y2 + z2, z2 − 2xy) = 0

15



3 Lagrange's method of solving the linear PDE of

�rst order, namely Pp +Qq = R.

Theorem. The general solution of the linear PDE

Pp+Qq = R (47)

is given by
φ(u, v) = 0 (48)

where φ is an arbitrary function and

u(x, y, z) = c1, v(x, y, z) = c2 (49)

form a solution of the equations

dx

P
=
dy

Q
=
dz

R
. (50)

Note. Equations (50) are called Lagrange's auxiliary (or subsidiary) equations for
(47).

3.1 Working rule for solving Pp+Qq = R by Lagrange's method.

Steps 1. Put the giving linear PDE of �rst order in the standard form

Pp+Qq = R (51)

Steps 2. Write down Lagrange's auxiliary equations for (51), namely,

dx

P
=
dy

Q
=
dz

R
. (52)

Steps 3. Solve (52) by using the well known methods of previous chapters. Let
u(x, y, z) = c1 and v(x, y, z) = c2 be two independent solutions of (52).

Steps 4. The general solution of (51) is then written in one of the following three
equivalent forms:

φ(u, v) = 0, u = φ(v), v = φ(u)
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3.2 Examples based on Working rule for solving Pp+Qq = R
by Lagrange's method.

There were four rules for getting two independent solutions of dx
P

= dy
Q

= dz
R
.

3.2.1 Examples based on Rule I

.

Example 3.2.1. Solve the given PDE

2p+ 3q = 1 (53)

Solution. Lagrange's auxiliary equations for (53) are

dx

2
=
dy

3
=
dz

1
(54)

Taking the �rst two fractions of (54) and re-writing, we get

3dx− 2dy = 0

∴ 3x− 2y = c1
(55)

Now taking the last two fractions of (54)and re-writing, we get

dy − 3dz = 0

∴ y − 3z = c2
(56)

Hence the required general solution is

φ(3x− 2y, y − 3z) = 0

Example 3.2.2. Solve the given PDE

xp+ yq = z (57)

Solution. Lagrange's auxiliary equations for (57) are

dx

x
=
dy

y
=
dz

z
(58)
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Taking the �rst two fractions of (58) and re-writing, we get

dx

x
− dy

y
= 0

lnx− ln y = ln c1

∴
x

y
= c1

(59)

Now taking the last two fractions of (58)and re-writing, we get

dy

y
− dz

z
= 0

ln y − ln z = ln c2

∴
y

z
= c2

(60)

Hence the required general solution is

φ(
x

y
,
y

z
) = 0

Example 3.2.3. Solve the given PDE

zp = −x (61)

Solution. Lagrange's auxiliary equations for (61) are

dx

z
=
dy

0
=

dz

−x
(62)

Taking the �rst two fractions of (62) and re-writing, we get

dy = 0

∴ y = c1
(63)

Now taking the �rst and last fractions of (62)and re-writing, we get

xdx+ zdz = 0

∴ x2 + z2 = c2
(64)

Hence the required general solution is

φ(y, x2 + z2) = 0

Exercise. Solve the PDE p+ q = 1.
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3.2.2 Examples based on Rule II.

Example 3.2.4. Solve the given PDE

p− 2q = 3x2 sin(y + 2x) (65)

Solution. Lagrange's auxiliary equations for (65) are

dx

1
=
dy

−2
=

dz

3x2 sin(y + 2x)
(66)

Taking the �rst two fractions of (66) and re-writing, we get

2dx+ dy = 0

∴ 2x+ y = c1
(67)

Now taking the �rst and last fractions of (66)and using (67), we get

dx

1
=

dz

3x2 sin(c1)

3x2 sin(c1)dx− dz = 0

x3 sin(c1)− z = c2

x3 sin(2x+ y)− z = c2

(68)

Hence the required general solution is

φ(2x+ y, x3 sin(2x+ y)− z) = 0

Example 3.2.5. Solve the given PDE

xyp+ y2q = zxy − 2x2 (69)

Solution. Lagrange's auxiliary equations for (69) are

dx

xy
=
dy

y2
=

dz

zxy − 2x2
(70)

Taking the �rst two fractions of (70) and re-writing, we get

dx

x
− dy

y
= 0

lnx− ln y = ln c1
x

y
= c1

x = yc1

(71)
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Now taking the �rst and last fractions of (70)and using (71), we get

dx

y
=

dz

zy − 2x
dx

1
=

dz

z − 2c1
dx

1
− dz

z − 2c1
= 0

x− ln(z − 2c1) = c2

x− ln(z − 2x

y
) = c2

(72)

Hence the required general solution is

φ(
x

y
, x− ln(z − 2x

y
)) = 0

Exercise. Solve the PDE z(p− q) = z2 + (x+ y)2.

3.2.3 Examples based on Rule III

Example 3.2.6. Solve the given PDE

(y − z)p+ (x− y)q = z − x (73)

Solution. Lagrange's auxiliary equations for (73) are

dx

y − z
=

dy

x− y
=

dz

z − x
(74)

Since (y − z) + (x− y) + (z − x) = 0,

∴ dx+ dy + dz = 0

Integrating the last equation, we get

x+ y + z = c1

Choosing (x, z, y) as multipliers, we re-write (73) as

xdx+ zdy + ydz

x(y − z) + z(x− y) + y(z − x)
=
xdx+ zdy + ydz

0

∴ xdx+ zdy + ydz = 0

xdx+ d(yz) = 0

(75)
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Integrating the last equation , we get

x2 + 2yz = c2

Hence the required general solution is

φ(x+ y + z, x2 + 2yz) = 0

Example 3.2.7. Solve the given PDE

dx

mz − ny
=

dy

nx− lz
=

dz

ly −mx
(76)

Solution. Choosing (l,m, n) as multipliers, we re-write (76) as

ldx+mdy + ndz

l(mz − ny) +m(nx− lz) + n(ly −mx)
=
ldx+mdy + ndz

0

∴ ldx+mdy + ndz = 0

(77)

Integrating the last equation , we get

lx+my + nz = c1

Again choosing (x, y, z) as multipliers, we re-write (76) as

xdx+ ydy + zdz

x(mz − ny) + y(nx− lz) + z(ly −mx)
=
xdx+ ydy + zdz

0

∴ xdx+ ydy + zdz = 0

(78)

Integrating the last equation , we get

x2 + y2 + z2 = c2

Hence the required general solution is

φ(lx+my + nz, x2 + y2 + z2) = 0

Exercise. Solve the PDE yp− xq = 2x− 3y.
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3.2.4 Examples based on Rule IV

Example 3.2.8. Solve the given PDE

(1 + y)p+ (1 + x)q = z (79)

Solution. Lagrange's auxiliary equations for (79) are

dx

1 + y
=

dy

1 + x
=
dz

z
(80)

Choosing (1, 1, 0) as multipliers, we re-write (80) as

dx+ dy + 0

(1 + y) + (1 + x) + 0
=

dx+ dy

x+ y + 2
(81)

Taking the last fraction of (80) and fraction (81), we get

dz

z
=

dx+ dy

x+ y + 2
(82)

Integrating the last equation , we get

z

x+ y + 2
= c1

Again choosing (1,−1, 0) as multipliers, we re-write (80) as

dx− dy + 0

(1 + y)− (1 + x) + 0
=
dx− dy
y − x (83)

Taking the last fraction of (80) and fraction (83), we get

dz

z
=
dx− dy
y − x

(84)

Integrating the last equation , we get

z(y − x) = c2

Hence the required general solution is

φ

(
z

x+ y + 2
, z(y − x)

)
= 0
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Example 3.2.9. Solve the given PDE

y2(x− y)p+ x2(y − x)q = z(x2 + y2) (85)

Solution. Lagrange's auxiliary equations for (85) are

dx

y2(x− y)
=

dy

x2(y − x)
=

dz

z(x2 + y2)
(86)

Taking the �rst two fractions of (86) and re-writing, we get

dx

y2(x− y)
= − dy

x2(x− y)

x2dx+ y2dy = o

∴ x3 + y3 = c1

(87)

Choosing (1,−1, 0) as multipliers, we re-write (86) as

dx− dy + 0

y2(x− y) + x2(x− y) + 0
=

dx− dy
(x− y)(x2 + y2)

(88)

Taking the last fraction of (86) and fraction (88), we get

dz

z(x2 + y2)
=

dx− dy
(x− y)(x2 + y2)

dz

z
=
dx− dy
(x− y)

(89)

Integrating the last equation, we get

z

x− y
= c2

Hence the required general solution is

φ

(
x3 + y3,

z

x− y

)
= 0
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Supplementry Problems

Solve the following PDE(s) by using Lagrange's auxiliary equation.

1. p+ q = z

2. 3p+ 4q = 2

3. yq − xp = z

4. xzp+ yzq = xy

5. x2p+ y2q = z2

6. p+ q = y

7. (tanx)p+ (tan y)q = tan z

8. p+ 3q = 5z + tan(y − 3x)

9. yp+ xq = xyz2(x2 − y2)
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